Your email:




Current Articles | RSS Feed RSS Feed

Energy Efficiency at Grand Central Terminal Saves $3.3 Million Annually

Grand central

As one of the busiest train stations in the country and the largest in the world by number of platforms, the iconic Grand Central Terminal lies in the heart of midtown Manhattan and provides services to approximately 750,000 people per day. Built in 1913 in the neoclassical Beaux-Arts architectural style, the splendor and grandeur of the historic Terminal is reminiscent of a time in American history when rail travel was in its heyday and trains were the most efficient means of long-distance commuting.

Described as "the world's loveliest station," this mammoth, 49-acre, pink-granite complex is leased and operated by the Metropolitan Transportation Authority (MTA), a state transportation agency. The Terminal boasts cavernous spaces and meticulously crafted detail, including a gleaming marble Main Concourse extending 125 feet high and chandeliers and lighting fixtures featuring over 60,000 bare, exposed light bulbs – a reflection of an innovative turn-of-the-century invention: the electric lightbulb.

One Hundred Years of Innovation at Grand Central

grand central

As one of the world’s first all-electric buildings, the Terminal was considered pioneering when it opened over a century ago. Constructed to better accommodate ever-growing rail traffic into the restricted Midtown area, the bi-level century-old station integrates a system of efficient circulation within the Terminal and between the city's streets, trains, subways and adjacent buildings. The facility also introduced new electrification technology, allowing the trains to run underground. This innovative technology avoided the soot and smog produced by steam locomotives, opened up valuable air rights on the streets above and created a resurgence of development in the area — paving the way for the modern midtown Manhattan we know today.

Today, the Terminal remains a design and technology innovator. Following the completion of a four-year, energy-saving renovation project at Grand Central Terminal in 2014, the complex will save an estimated $3.3 million annually and avoid 10,000 tons of carbon emissions.

Comprehensive Energy Efficiency at a National Historic Landmark

grand central

As a customer of New York Power Authority (NYPA), the MTA has leveraged NYPA’s innovative energy efficiency programs to conserve energy and save money. A leader in promoting energy efficiency, developing alternative energy sources and advancing clean transportation initiatives, NYPA's award-winning energy efficiency programs have contributed to New York’s ambitious environmental goals and has saved New York State taxpayers an estimated $6.4 million a year on energy costs at public facilities.

As an implementing contractor for NYPA’s energy conservation programs, SourceOne was contracted by NYPA to manage the design, implementation and commissioning for the $22.3 million in infrastructure improvements at Grand Central. Serving under a multi-year contract for NYPA, SourceOne is implementing energy efficiency projects at several facilities of NYPA electricity customers in New York City and Westchester County.  

grand terminalEnergy efficiency encompasses a wide range of cost-saving energy conservation and planning initiatives to minimize energy usage, maximize savings and reduce carbon footprint. In order to address inefficiencies, energy usage must first be quantified via an energy audit by a trained engineer. The objective of an energy audit is first to quantify and analyze usage and then to identify applicable Energy Conservation Measures (ECMs) to increase energy efficiency and generate energy savings.

Following a comprehensive energy audit where several ECMs were identified, SourceOne managed the extensive utility system upgrades at the Terminal, including new controls, lighting, chillers, cooling towers, fans, compressors, air handlers, metering and tenant sub-metering systems, extensive steam distribution system modifications and a new a state-of-the-art Building Management System (BMS).

grand central

One of the more challenging aspects of the comprehensive energy conservation project at the national landmark building was completed in 2014 with the replacement of the Terminal’s antiquated cooling system. This proved to be a complicated endeavor considering the Terminal’s location in the heart of bustling Midtown Manhattan, the largest central business district in the United States.

Grand Central - One of the ‘Coolest’ Places in NYC

grand centralUsing a crane and a carefully coordinated rigging operation, several cooling towers on the roof of the Terminal were replaced with new efficient stainless steel cooling towers in 2014. Completed in two stages at night to ensure safety and minimize disruptions, the massive equipment was hoisted up and over the south façade of the Terminal, above the iconic statue of Mercury and a priceless Tiffany clock and placed atop the century-old facility, invisible from the street below. The installation of the equipment required detailed coordination and scheduling due to the sheer size of the units, the Terminal’s location in Manhattan’s urban core and the construction permitting requirements within New York City.

The new energy efficient cooling towers work in tandem with four new centrifugal chillers located in the subbasement of the Terminal to efficiently cool the facility. With the use of Terminal’s new building management system, the operation of the pumps, cooling towers and chillers have been optimized using variable speed fans to control air flow based on demand and temperature fluctuations. In addition, the cooling towers have been equipped with improved monitoring and are controlled remotely to regulate the speed and flow of the equipment — providing optimal performance, energy savings and water savings by limiting the water consumption used in cooling.

Award Recognizes Terminal’s Energy Innovation

grand centralAs technology advances and new solutions arise for streamlining energy consumption, building owners are challenged to continuously optimize the efficiencies of their properties. This is particularly complicated for historic property owners that need to consider not only potential energy savings, but also the protection of the property’s materials and features. Through a holistic approach and evaluation of all aspects of the building envelope and its systems, the energy efficiency improvements at the historic Terminal were strategically implemented to avoid impacts to the facility’s historic characteristics.

In recognition of the $23.4 million Grand Central Terminal energy project, the MTA agency was awarded with a BuildSmart NY Innovators Award at the first annual "BuildSmart NY Innovators Summit" in 2014. The award recognizes the MTA for its innovative energy-savings and financing strategies. With its modern systems and efficiency improvements, the complex will save an estimated $3.3 million and 5.5 million kilowatts of electricity annually — representing a 10,000 ton reduction in carbon emissions and 30 percent reduction in energy consumption.


grand central video

Strategic energy management in commercial buildings yields efficiencies and savings


Municipal smart meters CTAEach year, commercial buildings waste about 30 percent of the energy they consume and spend a cumulative $107.9 billion annually in energy costs. With numbers like these it’s no wonder that commercial property owners are looking for ways to use energy more efficiently and cut energy costs. However, advanced technology requirements, evolving regulations and energy volatility pose significant challenges for businesses and organizations that are often unable to successfully navigate the complex energy landscape. Fortunately, qualified energy consulting experts, paired with advanced systems and technology, can help commercial building owners develop comprehensive energy management strategies to reduce energy consumption and cost. The ability to leverage advanced web-based systems and metering to track granular energy data has proven critical to Vornado Realty Trust (Vornado), one of the largest owners and managers of commercial real estate in the United States.

Smart-metering recovers millions for Vornado

commercial buildingsSub-metering and data management solutions, allow building owners and managers to track each tenant’s energy usage and bill tenants based on actual consumption. This enhances energy savings by helping to identify energy deficiencies, enabling more accurate budgeting and motivating tenants, building owners and managers to be more conscientious about their energy use. According to The Building Owners and Managers Association (BOMA), “The inability of commercial building owners to access whole‐building energy data, including energy consumption data in separately metered tenant spaces, restricts the capacity of both building owners and tenants to make informed decisions to drive energy efficiency improvements.”

With a portfolio over 100 million square feet, consisting of office, retail, and residential property, Vornado has been a pioneer in the sub-metering of its properties and leveraging smart metering technology to track energy use across its portfolio. Since 2006, SourceOne, a national energy management consulting firm, has assisted Vornado in reaching a fully designed, scalable, and innovative metering and data management solution, incorporating over 3000 meters across the Vornado portfolio.

New York CityFor nearly a decade, SourceOne has been providing meter data management and sub-metering design and installation for Vornado’s properties in New York and California. In 2013 SourceOne integrated its web-based energy management system, EMsys, to help support Vornado’s energy management efforts. This web-based tool integrates historical energy and water usage, temperature, humidity and environmental data and enables tenant’s access to their electricity bill, energy usage and data. By serving as a central repository, through which meter data and historic utility data is collected and tracked, EMsys supports real time monitoring of energy consumption, reporting of consumption and green-house-gas emissions (GHG), and customizable tenant energy invoices based on individual leases.

In addition, SourceOne’s integration of open protocol design metering systems has allowed Vornado to efficiently expand its metering infrastructure over time. With an open protocol design, the system operates modularly and technology upgrades do not require a major capital investment and replacement of the entire system. Utilizing open protocol design metering systems allows bi-directional, two-way communications and the application of the next generation metering infrastructure.

Through the implementation of sub-metering and energy management technologies Vornado has recovered millions in utility costs each year. In general, accelerating tenant cost recovery through metering and sub-tenant billing reduces collection periods and maximizes business profitability.

National life-science real estate firm streamlines energy, invoicing and metering for entire building portfolio

Septa saves $4 millionLike Vornado, many developers, office building owners and corporations own properties across various regions. In these instances an advanced energy management tool provides an added advantage. Using the EmSys tool, another SourceOne client, which owns many laboratory and medical research properties across the U.S., can now compare one building’s energy use, efficiency and best practices to another’s, thus improving operations. This customer selected SourceOne to provide a unique range and breadth of services to streamline energy management and costs, including use of EMsys, energy procurement and tenant utility billing, metering and invoice processing, energy tracking and reporting, and budgeting support.

Coordinating with multiple suppliers and procuring energy across regional energy markets is complex and time consuming, and requires multi-faceted, national energy expertise. Knowledge of regional energy markets allows for more flexible and accurate strategic commodity procurement, location-by-location. Despite growing energy volatility in the marketplace, differences in regional energy infrastructure and varied market constraints, SourceOne helped the customer negotiate a number of successful electricity and natural gas supply contracts in multiple energy markets.

In addition, SourceOne designed and developed a centralized location to contain and more easily manage all energy data related to the customer’s portfolio of buildings. Using the EMsys software, SourceOne provides data management services, including capturing the data from energy invoices and storing it in a centralized database.


To recover their costs and ensure that each tenant receives fair and accurate billing for their energy use, the customer relies on SourceOne to provide sub-metering and tenant invoicing. By leveraging the EMsys software and smart metering technology, the customer is able to produce individual tenant invoices based on energy use to better allocate utility costs for each tenant. The customer can also use the utility invoice and energy consumption data stored in EMsys for budgeting and site performance benchmarking.

Since partnering with SourceOne, the customer has greatly increased efficiencies across its national building portfolio, including:

• Greater tracking and management of energy usage and costs
• 10-15% savings on energy procurement and data management costs
• Expected payback of less than two years from smart metering upgrade
• Streamlined invoice payment and processing
• Efficient tenant cost recovery
• Improved budgeting process

Smarter energy management = Smarter commercial buildings

energy consultant

The energy marketplace is filled with complexities that can be both intimidating and seemingly impossible to translate without the insight of a seasoned energy expert. It is with the help of these experts, along with advanced metering, data management and tenant billing solutions, which have enabled commercial property managers and owners like Vornado to realize significant energy efficiencies and cost savings. With a robust energy management system in place, coupled with advanced metering technology, commercial buildings can help their bottom line, while advancing their sustainability goals.


New Call-to-action

SourceOne Energy Commodity Market Update - December 2014


NYMEX Natural Gas Futures Market

NYMEX natural gas was poised to close out the year at historic lows, despite a wild ride over the past 6 weeks during which the price of gas for 2015 traded in a $0.55/MMbtu (14%) range. The swift drop in the price of gas during the back half of 2014 has been driven by a combination of higher than expected gas production and modest weather related demand...


Click the link below to download the entire December energy commodity market update!

New Call-to-action

Qualified ESCOs help Federal agencies reach energy and sustainability goals


DOE Qualified ESCOIn an effort to lead by example, the nation’s largest energy consumer, the Federal government, established the Federal Energy Management Program (FEMP) to help guide Federal agencies towards more effective energy management solutions. The program, led by the U.S. Department of Energy (DOE), includes a List of Qualified Energy Service Company’s (ESCO’s), offering Federal agencies a skilled pool of experts to facilitate major capital projects and infrastructure improvements at Federal facilities. By facilitating projects and providing technical guidance to Federal agencies, the FEMP is saving energy and water, increasing use of renewable energy and alternative vehicle fuels, reducing petroleum use and reducing greenhouse gas emissions at Federal facilities. According to the DOE, “The Federal sector is leading by example by meeting more of its energy requirements from clean technologies and secure sources, and is helping spur innovation and commercialization of clean energy technologies across the country.”

SourceOne recognized by the U.S. Department of Energy as a qualified ESCO

ESCOsFollowing a stringent review process assessing SourceOne’s service capabilities, staff qualifications, financial strength and past performance, the DOE has recently added SourceOne to its List of Qualified ESCOs. Having provided project management, design, and implementation services for several successful energy, water and cost saving infrastructure projects, SourceOne has demonstrated its expertise in delivering a full range of turn-key energy solutions to help meet the DOE’s energy and sustainability goals. SourceOne’s team is responsible for approximately $500 million of monthly utility billings for its customers and has executed nearly $750 million in energy infrastructure capital improvements. (Learn more about utility incentives and energy saving programs HERE).

Innovative financing guided by private sector experts


Aging infrastructure, significant up-front capital cost requirements, and rising energy costs, represent significant challenges for Federal agencies. However, qualified ESCOs, with dedicated teams of subject matter experts specializing in energy management, energy efficiency, and engineering solutions, can help navigate the volatile energy landscape. Qualified ESCO’s are able to leverage innovative financing options, such as Energy Savings Performance Contracts (ESPC), to advance critical infrastructure projects. By engaging the expertise of an ESCO to manage and implement capital improvements using an ESPC, organizations can secure financing for infrastructure projects based on the future guaranteed savings.

With an ESPC, agencies work with a contractor or ESCO that manages and implements a project aimed at reducing energy and maintenance costs for a facility. Under this innovative financing model, ESPC’s provide Federal agencies with a unique opportunity to fund and advance capital infrastructure projects that yield significant energy and cost savings. (To learn more about ESPC’s, click HERE to read the first blog post in our new 3-part series!)

ESPC’s in Action – A community health center saves $150,000 annually

The Dimock Center in Roxbury, Mass. recently completed the replacement of its existing central steam plant with distributed boilers via an ESPC managed by SourceOne. In addition to greater energy efficiencies, the non-profit community health center is also benefitting from guaranteed savings valued at $150,000 per year.

ESPCHaving provided The Dimock Center with successful commodity procurement services since 2009, SourceOne was engaged to conduct a campus-wide energy audit to identify additional energy saving opportunities. During this audit, SourceOne identified the central steam plant as a strategic energy and cost saving opportunity and suggested various options for its replacement. Working with The Dimock Center, the SourceOne team identified creative financing structures and implementation options to meet the health center’s specific needs. Completed a year ahead of schedule and significantly under budget, SourceOne managed the full design and construction of the distributed natural gas steam boilers to replace the existing central steam plant. As owner’s representative of this ESPC, SourceOne developed an advanced design, estimated project costs and provided an annual $150,000 savings guarantee. The annual guaranteed savings, which is based on a combination of electricity, fuel, water and operational cost savings, was integral to the Dimock Center obtaining 3rd-party financing and advancing the project.

In addition to yielding $150,000 in annual savings, this boiler decentralization project is providing The Dimock Center with low-cost, sustainable heat, reduced maintenance and fuel costs and a comfortable environment for occupants. Additionally, SourceOne completed the project ahead of schedule and identified significant cost savings for the non-profit through a 30 percent reduction in capital costs. (Read more about The Dimock Center project HERE).

Central plant upgrades at New York college yields half million dollars in annual savings

NYCIn order to ensure optimal energy use throughout campus facilities and generate cost savings, The Cooper Union for the Advancement of Science and Art, a privately funded college in New York, N.Y., engaged SourceOne to develop an infrastructure master plan. Following retro-commissioning of the existing HVAC system, SourceOne recommended the renovation of the central plant and two floors of air distribution to optimize the college’s energy systems. In addition to helping The Cooper Union receive on-bill financing through a program offered by the New York Power Authority, SourceOne also provided engineering design for the rehabilitation of the central plant. Additional upgrades included the replacement of absorption chillers with high efficiency centrifugal chillers, a 150 kW packaged cogeneration plant with heat recovery and a comprehensive direct digital control based system to control and monitor all systems and equipment.

Over the course of the five-year, $14.1 million contract, SourceOne achieved and exceeded the total estimated savings for the new high-efficiency natural gas-fired condensing boiler and distribution system upgrades. The project achieved $550,000 per year in annual savings from steam, electricity and water efficiencies, in addition to chemicals and fuel price savings through the switch from utility-supplied steam to natural gas.

Select a partner from the DOE’s qualified list of ESCO’s

ESCOAlthough the energy marketplace can be volatile and often intimidating for agencies and organizations that require significant capital infrastructure upgrades, there are several options available to help advance these projects. As a DOE Qualified Energy Service Company, SourceOne can help agencies improve energy efficiency, save money and meet their energy and sustainability goals.

To learn more about the program and SourceOne’s capabilities, please reach out to Louis M. Schoen, LEED AP at (212) 612-7616 or

ACUPCC (Part III): Creative financing and energy solutions help colleges reduce GHG emissions


(If you missed the Part II blog post in this series about the American College & University Presidents’ Climate Commitment, CLICK HERE!)

Several U.S. universities and colleges have pledged to eliminate net greenhouse gas (GHG) emissions from specified campus operations and encourage sustainability research and education by signing the American College & University Presidents’ Climate Commitment (ACUPCC). The ACUPCC recognizes the necessity of reducing emissions to mitigate climate change and adverse health impacts. Signatories are required to develop an inventory of all GHG emissions and a Climate Action Plan (CAP) outlining emission reduction strategies and milestones (read Part I and Part II in this series to learn more about developing a GHG inventory and Climate Action Plan). In crafting solutions to meet the AUCPCC’s framework, signatories have several financing mechanisms and project implementation strategies to consider.

Financing options for energy conservation projects

There are several options available to help fund energy conservation projects with minimal financial exposure and risk, including revolving loan funds, power purchase agreements and Energy Performance Contracting (EPC), to name a few. The ACUPCC has recognized Energy Performance Contracting in particular as an extremely effective vehicle to advance comprehensive energy efficiency retrofits by leveraging the savings generated to fund the capital improvements. Oftentimes, capital bonds and tax-exempt loans can also be leveraged to enhance the ultimate financial outcome.

ESPCFor example, the Dimock Center, a non-profit health center located in Roxbury, Mass., recently leveraged an Energy Savings Performance Contract (ESPC) for a critical boiler decentralization project. Completed a year ahead of schedule and significantly under budget, SourceOne served as owner’s representative for this ESPC, managing the full design and construction phases for the replacement of the existing central steam plant with distributed boilers. Following project completion in October 2013, the Dimock Center now benefits from guaranteed savings valued at $150,000 per year, greater energy efficiencies, and improved occupant comfort (Read more about the Dimock Center’s boiler decentralization project HERE). By leveraging this innovative financing model, signatories can finance the cost of the project from the future estimated savings resulting from the capital improvements.

The University of Pennsylvania leverages “Green Steam” to help meet its ACUPCC commitment

PennSince each college and university’s campus, infrastructure and environmental footprint is diverse and unique, signatories can follow various paths to meet climate neutrality. As the first Ivy League signatory of the ACUPCC, the University of Pennsylvania (Penn) launched its Climate Action Plan in September 2009 and has committed to achieving climate neutrality by the year 2042. Penn has undertaken several significant efforts to improve sustainability in all aspects of campus life and operations, including developing a centralized system to track steam consumption, implementing several smart meter installations and leveraging highly efficient and sustainable “Green Steam” supplied by Veolia North America.


green steam

"Green Steam is an innovative environmental solution that captures and reuses heat that was previously lost to the environment. All systems on campus that require thermal energy - heat, hot water, lab equipment, humidifiers – are supplied with “Green Steam which totals about half of Penn's energy usage. As part of Veolia’s recently extended steam supply agreement with Penn, Veolia completed the replacement of an older, less-efficient oil-fired boiler with two new, natural gas-fired rapid-response boilers to significantly reduce GHG emissions and increase the overall efficiency of Veolia’s steam service. Veolia's multi-million dollar investment in energy infrastructure increases efficiency and reduces annual carbon emissions by the equivalent of 70,000 cars removed from the streets. According to Penn’s Climate Action Plan, the improvements are expected to reduce Penn’s emissions associated with steam by an estimated 10 percent (overall campus emissions are estimated to drop 2 percent).

New York University’s CHP plant ‘powers on’ through Hurricane Sandy

NYU Washington SquareNew York University (NYU) is also a signatory of the ACUPCC and has committed to reaching a zero-emission climate neutrality goal by 2040. According to NYU’s Climate Action Plan, launched in March 2010, the energy required to heat, cool, and power university buildings accounts for 96.5 percent of NYU’s direct GHG emissions. Therefore, reducing energy consumption through energy efficiency and leveraging clean energy are both fundamental strategies outlined in NYU’s CAP. NYU’s Climate Action Plan is structured around four major emissions reduction strategies, as follows:

  1. Reduce energy intensity
  2. Generate and use cleaner energy
  3. Generate renewable energy
  4. Reduce or offset remaining emissions

NYC GHG reduction by strategy resized 600To help the achieve its emission reduction targets, save money and meet increasing electricity demands, New York University decided to expand its existing cogeneration plant on its Greenwich Village campus in 2010. Serving as owner’s representative, SourceOne led the redevelopment of the expanded 13.4 megawatt (MW) Combined Heat and Power (CHP) plant which serves the electrical needs for 22 campus buildings and steam and hot water for 37 campus buildings. According to NYU’s Climate Action Plan, the expanded cogeneration plant accounts for the single largest reduction in GHG emissions to date, representing a 23 percent decrease in total campus emissions since 2006. NYU's cogeneration system prevents an estimated 43,400 tons per year of GHG emissions and reduces the university's energy costs by over $5 million annually.

NYU cogen plantNYU’s cogeneration plant proved to be critical in ensuring reliable power and heat supply following 2012’s Hurricane Sandy. In the fall of 2012, Hurricane Sandy, left millions without heat and power and caused $50 billion in damages. While the majority of Manhattan was without power, most of NYU’s Greenwich Village campus had electricity, heat, and hot water. NYU was able to generate electricity and heat on its own from its expanded cogeneration plant (learn more about NYU’s experience HERE). The campus quickly became a haven for staff, students and surrounding community members without heat and power. Following the storm, it became a command center for emergency workers throughout Manhattan. In 2013, the U.S. Environmental Protection Agency (EPA) awarded NYU with the Energy Star CHP Award. As one of five award recipients, the EPA selected NYU for its efforts in reducing emissions and increasing energy reliability and efficiency for its cogeneration plant.

ACUPCC as a framework to guide energy efficiency and sustainability

Colleges and universities are the perfect partner to advance sustainability and emissions reduction efforts to mitigate climate change. The nation’s 4,000-plus private nonprofit and public colleges and universities educate more than 20 million students each year and own and manage tens of thousands of buildings, heating and cooling millions of square feet each day. The ACUPCC provides a solid framework to help colleges and universities implement advanced energy solutions to reduce emissions, save money and improve efficiencies.

Additional Resources:

SourceOne earns Crain’s “Best Places to Work in New York City” as the only energy firm


SourceOne, a national energy consulting firm managed by Veolia North America, was named by Crain’s New York Business as a recipient of the"Best Places to Work in New York City,” representing the top 100 businesses in New York City. As the only energy firm listed, this recognition marks the fourth consecutive year that SourceOne’s New York office has made the list. The companies featured on the “2014 Best Places to Work in New York City” list were selected based on the results of a weighted survey and questionnaire of both employees and employers conducted by Crain’s New York Business in partnership with Best Companies Group.

Located at 7 Penn Plaza, SourceOne employees enjoy numerous perks including employee education and tuition reimbursement programs. Additionally, employees are invited to take part in educational seminars providing energy and engineering best practices.  With extensive experience and these additional educational opportunities at their disposal, SourceOne employees hold some of the most significant certifications in energy engineering. Read more and check out the list HERE!

Source One

ACUPCC (Part II): Develop a Climate Action Plan to drive energy conservation projects


(If you missed the Part I blog post in this series about the American College & University Presidents’ Climate Commitment, CLICK HERE!)

Colleges and universities strive for climate neutrality with the ACUPCC

Colleges and universities fight climate change The scale and speed of global warming and its adverse impacts on human health and the environment has prompted a number of U.S. colleges and universities to sign the American College & University Presidents’ Climate Commitment (ACUPCC) – an agreement to eliminate net greenhouse gas (GHG) emissions from specified campus operations and promote sustainability research and education. Signatories of the ACUPCC are committed to reduce global GHG emissions 80% by mid-century to avert the worst impacts of global warming and to reestablish stable climatic conditions. In addition to developing a comprehensive inventory of all GHG emissions, signatories are also required to develop a Climate Action Plan (CAP) outlining strategies and progress towards achieving climate neutrality (read Part I in this series to learn more about developing a GHG inventory).

Developing a Climate Action Plan

climate action planWithin two years of signing the commitment, the CAP should be completed, in addition to outlining a final target date and interim milestones for achieving climate neutrality. Under the terms of the Commitment, all Scope 1 and 2 emissions, as well as those specific Scope 3 emissions must be eliminated and/or neutralized:

  • Scope 1: Direct Emissions - emissions that are physically produced on campus (e.g. on-campus power production, campus vehicle fleets, refrigerant leaks). These sources are “owned or directly controlled” by your institution.
  • Scope 2: Indirect Emissions - emissions associated with purchased utilities required for campus operation. They are indirect emissions resulting from activities that take place within the organizational boundaries of the institution, but that occur at sources owned or controlled by another entity.
  • Scope 3: Other Indirect Emissions - emissions from sources that are not owned or controlled by the campus, but that are central to campus operations or activities (e.g. non-fleet transportation, employee/student commuting, air travel paid for by your institution).

Many colleges and universities utilize the CAP as a strategic planning tool to drive energy conservation projects and guide in the reduction of GHG emissions. Often the CAP can be successfully incorporated into a more holistic sustainability plan. A comprehensive CAP should:

  • independent energy consultantExplain how your institution intends to achieve climate neutrality by its target date and outline specific strategies and conservation projects to mitigate emissions. Oftentimes, institutions are better served by hiring an independent energy consultant to streamline the process and facilitate the data collection, energy audits, emission calculations, reporting and project implementation to meet emission reduction targets. 
  • Describe planned actions to make climate neutrality and sustainability a part of the curriculum and/or other educational experience for all students.
  • Describe actions to expand research and community engagement to support efforts toward the achievement of GHG reductions for the institution and/or the community and society.
  • Outline mechanisms for tracking progress on goals and actions.

Evaluating energy conservation projects

energy conservation projectsThe CAP should identify the largest sources of global warming pollutants, areas of greatest opportunity for GHG emissions abatement, and incorporate a comprehensive list of potential energy conservation measures for avoiding or reducing GHG emissions from each of the sources included in the GHG inventory. The emissions-reduction and savings potential of various projects should be carefully considered in order to reap maximum emissions reductions and return on investment. An energy consulting firm well-versed in energy, facilities infrastructure, engineering, and data management can help assess the viability and return on investment of each project and serve as owner’s representative to guide implementation. Various criteria should be considered when evaluating mitigation options:

  1. Potential to avoid or reduce GHG emissions.
  2. Flexibility as a step towards future emissions-reduction measures.
  3. Return on investment or financial impact (Life Cycle Analysis and Financial Risk Management analysis may be more appropriate than simple payback and ROI calculations). 
  4. Potential to create positive and/or negative social and environmental side-effects.
  5. Relationship to other potential measures and opportunities for synergistic measures.
  6. Potential to be scaled upward if successful.
  7. Potential to involve students and faculty.

Careful analysis of the emissions reduction and energy conservation measures will enable signatories to envision possible courses of action and establish targets that are in line with the commitment to achieve climate neutrality. Once the measures have been evaluated and prioritized, early actions can be implemented. Oftentimes, energy conservation projects such as lighting retrofits, insulation, and HVAC upgrades can yield significant savings, relatively short pay-back periods and substantial emissions reductions.

Common conservation strategies

Stay tuned for Part III of this series to learn more about financing options and creative energy solutions to meet your sustainability and emissions reduction goals!

Additional Resources:

ACUPCC (Part I): Colleges and Universities Fight Global Climate Disruption


About The American College & University Presidents’ Climate Commitment

ACUPCC logoThe American College & University Presidents’ Climate Commitment (ACUPCC) is a high-visibility effort undertaken by a network of colleges and universities to address global climate disruption and accelerate progress towards climate neutrality and sustainability. Each institution has committed to eliminate net greenhouse gas (GHG) emissions from specified campus operations and to promote research and education geared towards stabilizing the earth’s climate.


ACUPCC was first created in October 2006 at Arizona State University with 12 college and university presidents as founding members. Today, over 675 universities and colleges in all 50 states and the District of Columbia are signatories under the ACUPCC, representing a student population of over 5.6 million.

The ACUPCC provides a framework and support for America’s colleges and universities to implement comprehensive plans in pursuit of climate neutrality. The commitment recognizes the unique responsibility that institutions of higher education have as role models within their communities and in providing education to accelerate climate neutrality and reverse global warming. In addition, implementing efficiency measures in educational facilities typically reduces long-term energy expenses, optimizes energy use and provides predictability for energy costs and budgeting.

As signatories of the ACUPCC, institutions have agreed to:

  • Complete an emissions inventory
  • Within two years, set a target date and interim milestones for becoming climate neutral.
  • Take immediate steps to reduce greenhouse gas emissions by choosing from a list of short-term actions (typically derived from an energy audit).
  • Integrate sustainability into the curriculum and make it part of the educational experience.
  • Make the action plan, inventory and progress reports publicly available. 
ACUPCC timeline resized 600

Understanding your emissions trajectory

As a critical component of the ACUPCC, signatories are required to develop a comprehensive inventory of all GHG emissions within one year after signing the commitment and an updated GHG emission report every other year thereafter. Collecting your unique GHG emissions data can be daunting; however, understanding your emissions trajectory over time will provide a starting point for identifying potential energy conservation measures (ECMs) and developing a comprehensive climate action plan to achieve climate neutrality. Consistent with the GHG Protocol standards, ACUPCC signatories are required to report on three scopes of emissions sources, including Scopes 1 and 2, and two areas of Scope 3.

Scope 1: Direct Emissions
Scope 1 emissions are those that are physically produced on campus (e.g. on-campus power production, campus vehicle fleets, refrigerant leaks). These sources are “owned or directly controlled” by your institution.

Scope 2: Indirect Emissions
Scope 2 emissions are mostly associated with purchased utilities required for campus operation. They are indirect emissions resulting from activities that take place within the organizational boundaries of the institution, but that occur at sources owned or controlled by another entity.

Scope 3: Other Indirect Emissions
Scope 3 includes emissions from sources that are not owned or controlled by the campus, but that are central to campus operations or activities (e.g. non-fleet transportation, employee/student commuting, air travel paid for by your institution).

Greenhouse gas emissions inventory process

GHG inventoryThere are three stages to the GHG emissions inventory process: data collection; GHG emissions calculation; and data analysis for climate action planning. The raw data required for a campus GHG inventory calculation falls generally under the following major categories:

  • Purchased electricity, steam and chilled water
  • On campus stationary sources (energy generation)
  • Transportation (commuting, air travel, campus fleet)
  • Agriculture (fertilizer use, animal waste)
  • Solid waste (incinerated, landfill)
  • Refrigerants and other chemicals
  • Offsets (Renewable Energy Credits purchased, composting, forest preservation, local offset project such as paying for boiler conversion at a local K-12 school, etc.)

This data may be acquired from a variety of sources, including: campus metering, energy management and data management systems, the physical plant department, the campus planning office, local utilities, etc. Following data collection, GHG emissions can be calculated from the raw data. Although there are free calculator tools available, institutions are often better served by hiring an independent energy consultant to facilitate and conduct the data collection, energy audits, emission calculations, reporting and resulting data analysis. Following the development of a comprehensive emissions inventory, a Climate Action Plan (CAP) should be developed to include strategies on reducing GHG emissions and achieving climate neutrality.


Stay tuned for Part II of this series to learn more about the ACUPCC and how to develop and implement a climate action plan to meet your emission reduction targets and sustainability goals!

Additional Resources:

stock2 resized 600

State-of-the-art SCADA systems ensure energy reliability for municipalities and industrial businesses


For municipalities or industrial entities operating utilities, the growing need for energy reliability and leveraging central control of remote electric and/or mechanical equipment has led to a rise in Supervisory Control and Data Acquisition systems, or SCADA systems. These systems can monitor and alter utility and equipment performance across an entire infrastructure from one central location. However, out-of-date software, virus susceptibility and grid placement can create gaps in SCADA systems, leaving a utility vulnerable to cyber-attack or failure. Due to these severe consequences facing vulnerable utilities, selecting the proper SCADA system software provider is crucial to continued performance and safety. Expert energy consultants can help select the best provider, while also acting as a client agent throughout the Request for Proposal (RFP) and implementation processes, bringing best practice knowledge to the project and helping make educated choices about system execution.

When the Vineland Municipal Electric Utility (VMEU) required upgrades to its existing SCADA system, the municipally owned utility initiated a comprehensive bidding process for a qualified owner’s representative to manage the design and implementation. VMEU wanted to do all it could to proactively mitigate any potential security risks, while also ensuring continued power reliability for its customers in Vineland, New Jersey. Following a competitive bidding process, VMEU hired SourceOne, a national energy management firm, to serve as owner’s representative for the implementation of a state-of-the-art, multi-platform, open network architecture based SCADA system.

How do SCADA systems work?

SCADA systemsGenerally, SCADA systems use Remote Telemetry Units (RTUs) to monitor physical points, or substations, within an electric grid or comparable utility. These RTUs transmit data back to one central location, the master station, in order to monitor fluctuations in activity, emergency events and equipment failures. In addition to being able to see what is happening throughout the grid in near real-time, SCADA enables the operator at the central location to control alarm response, turn equipment on or off, close or open valves, reset fuses, signal backup equipment to takeover or other actions and efficiently allocate resources across the substations during an emergency event.

Using coded signals to provide control of remote equipment, Data Acquisition Systems gather information from meters and equipment and relay their operating status’ and performance history to the master station. Human Machine Interfaces (HMIs) process the data retrieved from RTUs and present it to the operator understandably, with the help of animations, schematics and graphs, to represent the current state of operating machinery. Diagnostic statistics can be conveyed as well to help a utility understand its performance and plan for any future failures. All of this data at hand results in more informed decision making regarding energy assets and the subsequent improved management of electrical infrastructure altogether.

Security risk mitigation for web-based SCADA systems

New innovations in technology have led to the development of cloud based SCADA systems, which can reduce infrastructure costs but leave a utility even more vulnerable to cyber-attacks than previous installations. In the event of a cyber-attack, a virus or hacker could alter the transmitted data, making performance appear normal and preventing any alarms even in the case of a system failure, regional power outage or surge. In the event of an electric grid failure or targeted power outage, hospitals could become inoperable, traffic lights could go out, water and wastewater utilities may not be able to treat water and a municipality would be left dealing with these and various other threats to the health and safety of its community.

SCADA systemIn order to prevent disaster, SCADA systems and the experts who implement them must develop multiple layers of industrial-grade firewalls to keep attackers out and electric grids running. Complicating matters, many municipalities, including Vineland, operate on grids provided by other cities which require additional data transfer and therefore, permeation of certain firewalls. To account for these circumstances, cities and businesses can mitigate their risk by seeking help from energy consulting experts well-versed in SCADA systems and system security to select the best suited software. The SCADA software provider itself is responsible for all maintenance, upgrades, security threat mitigation and, in the case of company closure, stored data retrieval. This is even more reason to carefully select the right owner’s representative and SCADA system provider. Utilities may also want to question how controllers can access and respond to remote data alerts, as wireless systems and mobile devices can provide both an additional alert system and another point of attack.

Advanced SCADA systems provide redundancy and scalability

Part of a well-implemented SCADA system’s role is to ensure continued system reliability and performance, even in the event of an equipment failure. Selecting a system with built-in redundancy can help improve reliability at all times, but is particularly helpful during weather emergencies. Failing parts can be identified immediately, and their responsibilities taken over by remotely triggered backup equipment. This prevents an employee from driving to the substation during a severe weather event and offers a quicker response to the homes and businesses that depend on the substation in question. Perhaps even more appealing, advanced SCADA systems offer an electric utility more opportunity to upgrade and expand its system due to the technical flexibility and ability to add additional monitoring points and substations easily. Centrally managing these sites, and those that incorporate newer, renewable energy sources like wind and solar power, allow utilities like VMEU to deliver more sustainable and reliable power.

SCADA Blog 2 resized 600Selecting a qualified owner’s representative will ensure the implementation of the most effective SCADA solution to deliver power reliability and redundancy, while mitigating potential security risks. With an upgraded SCADA system in place, municipalities and industrial businesses will be better equipped to handle day-to-day operational threats and those threats posed by extreme circumstances. Scheduled to be completed by the end of 2014, Vineland Municipal Electric Utility’s SCADA project serves as a model example of a utility taking the necessary steps to better monitor, protect and control its power generation, transmission and distribution infrastructure, while delivering efficient and reliable power to customers.

SourceOne Energy Commodity Market Update - June 2014


NYMEX Natural Gas Futures Market

Mostly driven by heavy winter withdrawals and the exit from winter with inventories at a 10 year low, forward strips for 2015 have moved upwards since the six month low on January 10th at $3.995/MMBtu.  Forwards for 2015 have softened in reaction to several strong storage reports over the past few weeks but there is still a premium on these forwards compared with this time last year. The June 14 contract gained about 11 cents to settle at $4.619/MMBtu in the last day of trading this week as open positions were closed.  Monthly contracts for the balance of 2014 have followed a similar trajectory as the 2015 annual strip with some backing off of current trading values with an average balance of the year strip at $4.54/MMBtu and a six month high to low spread of about 87 cents.  Future support and resistance levels for the remaining contracts in 2014 will be determined by both the actual level of gas demand created by summer cooling requirements and continued increased supply that has been created by current pricing.....

Click the link below to download the entire June energy commodity market update!

June 2014 Commodity Market Update

All Posts